z-logo
open-access-imgOpen Access
An analysis of the key safety technologies for natural gas hydrate exploitation
Author(s) -
Yuan Yang,
Youbing He,
Qinglong Zheng
Publication year - 2017
Publication title -
advances in geo-energy research
Language(s) - English
Resource type - Journals
eISSN - 2208-598X
pISSN - 2207-9963
DOI - 10.26804/ager.2017.02.05
Subject(s) - natural gas , hydrate , petroleum engineering , stratum , fossil fuel , drilling , environmental science , clathrate hydrate , work (physics) , risk analysis (engineering) , geology , waste management , engineering , chemistry , business , geotechnical engineering , organic chemistry , mechanical engineering
Natural Gas Hydrate (NGH) is a high combustion efficiency clean energy and its reserve is twice as that of natural gas and petroleum, so NGH is the potential resource which could overcome the increasing energy assumption. One of the essential aspects during the exploitation of NGH is to avoid risk, and here in this work, we summarized the relevant management experience to study the critical safety risk in the exploitation of natural gas hydrate. The problems that must be resolved during NGH exploitation were identified through the research on the comparison of the characteristics of conventional gas hydrate mining methods and potential drilling engineering risks and stratum damages in the processes of exploitation. Combined with typical case analysis of gas hydrate mining, it is concluded that the key for safe NGH exploitation is the changes of stratum stress caused by hydrate decomposition; and all safety management experiences should be based on steady drilling and reasonable exploitation to prevent environment, equipment, persons and other aspects damages from layering and stress changes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom