z-logo
open-access-imgOpen Access
Diurnal variability of the planetary boundary layer height estimated from radiosonde data
Author(s) -
Gu Jie,
Zhang YeHui,
Yang Na,
Wang Rui
Publication year - 2020
Publication title -
earth and planetary physics
Language(s) - English
Resource type - Journals
ISSN - 2096-3955
DOI - 10.26464/epp2020042
Subject(s) - radiosonde , diurnal cycle , latitude , planetary boundary layer , environmental science , diurnal temperature variation , climatology , atmospheric sciences , meteorology , geography , geology , geodesy , turbulence
Diurnal variations in the planetary boundary layer height (PBLH) at different latitudes over different surface characteristics are described, based on 45 years (1973−2017) of radiosonde observations. The PBLH is determined from the radiosonde data by the bulk Richardson number (BRN) method and verified by the parcel method and the potential temperature gradient method. In general, the BRN method is able to represent the height of the convective boundary layer (BL) and neutral residual layer cases but has relatively large uncertainty in the stable BL cases. The diurnal cycle of the PBLH over land is quite different from the cycle over ocean, as are their seasonal variations. For stations over land, the PBLH shows an apparent diurnal cycle, with a distinct maximum around 15:00 LT, and seasonal variation, with higher values in summer. Compared with the PBLH over land, over oceans the PBLH diurnal cycles are quite mild, the PBLHs are much lower, and the seasonal changes are less pronounced. The seasonal variations in the median PBLH diurnal cycle are positively correlated with the near‐surface temperature and negatively correlated with the near‐surface relative humidity. Finally, although at most latitudes the daytime PBLH exhibits, over these 45 years, a statistically significant increasing trend at most hours between 12:00 LT and 18:00 LT over both land and ocean, there is no significant trend over either land or ocean in the nighttime PBLH for almost all the studied latitudes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here