z-logo
open-access-imgOpen Access
POLES ISOLATION VIA ESPRIT FOR ULTRA-WIDE BAND BREAST CANCER IMAGING
Author(s) -
Ahmed Maher Abed,
Dheyaa T. AlZuhairi,
Kaydar M. Quboa,
J.M. Gahl,
Naz E. Islam
Publication year - 2019
Publication title -
progress in electromagnetics research c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 34
ISSN - 1937-8718
DOI - 10.2528/pierc19052004
Subject(s) - isolation (microbiology) , breast cancer , medicine , biomedical engineering , biology , cancer , bioinformatics
In this paper, microwave breast cancer detection is investigated using the Ultra-Wide Band (UWB) radar imaging technique. A novel calibration approach based on the Estimation of Signal Parameters via Rotational Invariance Technique (ESPRIT) is used and adapted to work in this field. Using this method, many high amplitude undesired responses can be removed like early time clutter, late time clutter, and the mutual coupling between antennas. Using an electromagnetic simulation tool, a numerical phantom with a heterogeneous structure and dispersive dielectric properties is made for simulating the interactions of the electromagnetic fields with various breast tissues and investigating the proposed approach. The calibrated signals show the capability of the proposed algorithm in separating the tumor/glandular responses from the clutter. Also, the results of the proposed algorithm are compared with the Wiener algorithm results which are considered one of the best techniques to remove clutter, reduce late time clutters in the multistatic, and enhance the beamformer algorithm performance. Moreover, we propose the use of Transmitting-Receiving Antenna Separation Distance (TRASD) to limit the reflection angles from the voxel under the calculations of DAS and IDAS beamforming algorithms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom