z-logo
open-access-imgOpen Access
DETECTION AND LOCALIZATION OF AN OBJECT BEHIND WALL USING AN INVERSE SCATTERING TECHNIQUE WITH WALL DIRECT SUBTRACTION METHOD
Author(s) -
Mohamad Faizal Mahsen,
Kismet Anak Hong Ping,
Shafrida Sahrani
Publication year - 2019
Publication title -
progress in electromagnetics research c
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.341
H-Index - 34
ISSN - 1937-8718
DOI - 10.2528/pierc19010701
Subject(s) - subtraction , background subtraction , inverse , object (grammar) , scattering , inverse scattering problem , image subtraction , computer science , computer vision , artificial intelligence , physics , optics , mathematics , image (mathematics) , geometry , image processing , arithmetic , binary image , pixel
Through-wall imaging (TWI) is one of the useful applications nowadays in microwave tomography field. Reconstructing image of an object becomes more challenging when it is obscured by walls. In practice, the inclusions of noise worsen the reconstruction results. In this paper, ForwardBackward Time-Stepping (FBTS) in time inversion technique is utilized and integrated with Wall Direct Subtraction (WDS) method to reconstruct unknown object behind walls. The investigation includes two types of walls that are homogeneous and heterogeneous. The object is surrounded by closed walls. With noise added in the setup, Singular Value Decomposition (SVD) and Savitzky-Golay (SG) filtering method are used to eliminate the noise and enhance the reconstructed image of an object. The results show that WDS integrated with FBTS has successfully mitigating wall clutter from both homogeneous and heterogeneous walls, and also improves image reconstruction of a hidden object. Further, by using the proposed noise reduction method, lower MSE values can be achieved.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom