z-logo
open-access-imgOpen Access
FAST AND OPTIMAL DESIGN OF A K-BAND TRANSMIT-RECEIVE ACTIVE ANTENNA ARRAY
Author(s) -
Shaohua Yang,
Liu Qi-zhong,
Jun Yuan,
Shi-Gang Zhou
Publication year - 2008
Publication title -
progress in electromagnetics research b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.208
H-Index - 47
ISSN - 1937-6472
DOI - 10.2528/pierb08082205
Subject(s) - computer science , antenna (radio) , telecommunications , acoustics , physics
—An active-antenna array with 18 transmit elements and 18 receive elements is designed and fabricated. This T/R array can work at two different frequencies (19.5 GHz and 21.5 GHz) with multiple levels of isolation between the transmit and receive channels. A hybrid element-level vector finite element and adaptive multilevel fast multipole method (ELVFEM/AMLFMA) is applied to simulation the performance parameters of the array element and the full array fast. To obtained the maximum directivity of the array,the best distances of the T/R elements in the array are optimized by using the genetic algorithm (GE) combining with VFEM/AMLFMA. The design efficiency of the array is improved at a ratio of 30%. Finally the performance of the T/R array fabricated is measured in experiments and some good results are obtained.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom