MULTI-POLARIZATION DIMENSIONALITY OF MULTI-ANTENNA SYSTEMS
Author(s) -
M.S. Elnaggar,
Sujeet K. Chaudhuri,
Safieddin SafaviNaeini
Publication year - 2009
Publication title -
progress in electromagnetics research b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.208
H-Index - 47
ISSN - 1937-6472
DOI - 10.2528/pierb08050402
Subject(s) - curse of dimensionality , computer science , polarization (electrochemistry) , antenna (radio) , telecommunications , artificial intelligence , chemistry
—Based on the deterministic Maxwellian framework, we investigate the ability of each of the dual fields (electric and magnetic) in carrying independent information in a multi-polarization MIMO system. We quantify the performance by using a well-defined power independent dimensionality (PID) metric. We present numerical results for 3 deterministic scenarios: a canonical free-space (near and far field exact solution), a canonical PEC corridor (using rigorous modal analysis) and a lossy-wall corridor (using image ray tracing). The deterministic results show that in a multi-path rich environment, the hexapole system (collocated polarized electric and magnetic point radiators) is almost guaranteed to provide more than 3 DOF. However, in the simulated scenarios, the maximum 6 DOF are never attained due to the inevitable coupling between the electric and magnetic fields. On the other hand, for a tripole system, the upper-limit of 3 DOF is achievable.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom