z-logo
open-access-imgOpen Access
MULTI-POLARIZATION DIMENSIONALITY OF MULTI-ANTENNA SYSTEMS
Author(s) -
M.S. Elnaggar,
Sujeet K. Chaudhuri,
Safieddin SafaviNaeini
Publication year - 2009
Publication title -
progress in electromagnetics research b
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.208
H-Index - 47
ISSN - 1937-6472
DOI - 10.2528/pierb08050402
Subject(s) - curse of dimensionality , computer science , polarization (electrochemistry) , antenna (radio) , telecommunications , artificial intelligence , chemistry
—Based on the deterministic Maxwellian framework, we investigate the ability of each of the dual fields (electric and magnetic) in carrying independent information in a multi-polarization MIMO system. We quantify the performance by using a well-defined power independent dimensionality (PID) metric. We present numerical results for 3 deterministic scenarios: a canonical free-space (near and far field exact solution), a canonical PEC corridor (using rigorous modal analysis) and a lossy-wall corridor (using image ray tracing). The deterministic results show that in a multi-path rich environment, the hexapole system (collocated polarized electric and magnetic point radiators) is almost guaranteed to provide more than 3 DOF. However, in the simulated scenarios, the maximum 6 DOF are never attained due to the inevitable coupling between the electric and magnetic fields. On the other hand, for a tripole system, the upper-limit of 3 DOF is achievable.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom