APPLICATION OF SVD NOISE-REDUCTION TECHNIQUE TO PCA BASED RADAR TARGET RECOGNITION
Author(s) -
Kun-Chou Lee,
Jhih-Sian Ou,
Ming-Chung Fang
Publication year - 2008
Publication title -
electromagnetic waves
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.437
H-Index - 89
eISSN - 1559-8985
pISSN - 1070-4698
DOI - 10.2528/pier08032101
Subject(s) - noise reduction , singular value decomposition , pattern recognition (psychology) , reduction (mathematics) , computer science , radar , artificial intelligence , noise (video) , principal component analysis , speech recognition , mathematics , telecommunications , geometry , image (mathematics)
The noise effect is very challenging in radar target recognition. It usually degrades the accuracy of target recognition and then makes the recognition unreliable. In this study, we present a noise-reduction technique to improve the accuracy of radar target recognition. Our noise-reduction technique is based on the SVD (singular value decomposition). The PCA (principal components analysis) based radar recognition algorithm is utilized to verify our noise-reduction scheme. In our treatment, the received signals are arranged into a Hankel-form matrix. This Hankel-form matrix is decomposed into two subspaces, i.e., the noise-related subspace and clean-signal subspace. The noise reduction is obtained by suppressing the noise-related subspace and retaining the clean-signal space only. Simulation results show that the accuracy of target recognition is greatly improved as the received signals are first processed by the SVD noise-reduction technique. With the use of proposed noise-reduction scheme, the radar target recognition can tolerate more noises and then becomes more reliable. The noise-reduction technique in this study can also be applied to many other problems in radar engineering.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom