EFFICIENT ELECTRICALLY SMALL PROLATE SPHEROIDAL ANTENNAS COATED WITH A SHELL OF DOUBLE-NEGATIVE METAMATERIALS
Author(s) -
Ming Huang,
S.Y. Tan
Publication year - 2008
Publication title -
electromagnetic waves
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.437
H-Index - 89
eISSN - 1559-8985
pISSN - 1070-4698
DOI - 10.2528/pier08031604
Subject(s) - prolate spheroid , metamaterial , materials science , shell (structure) , physics , split ring resonator , optics , classical mechanics , composite material
An efficient, electrically small prolate spheroidal antenna coated with confocal double-negative (DNG) metamaterials (MTMs) shell is presented. The radiation power of this antenna-DNG shell system excited by a delta voltage across an infinitesimally narrow gap around the antenna center is obtained using the method of separation of the spheroidal scalar wave functions. Our results show that this electrically small dipole-DNG shell system has very high radiation efficiency comparing with the normal electrically small antenna due to the inductive effect of the MTMs shell that cancel with the capacitive effect of the electrically small antenna. It is found that the spheroidal shell can achieve more compact structure and higher radiated power ratio than the corresponding spherical shell. This dipole-DNG shell systems with different sizes are analyzed and discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom