USING ELECTROMAGNETIC BANDGAP SUPERSTRATE TO ENHANCE THE BANDWIDTH OF PROBE-FED MICROSTRIP ANTENNA
Author(s) -
Abbas Pirhadi,
Mohammad Hakkak,
Farshad Keshmiri
Publication year - 2006
Publication title -
electromagnetic waves
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.437
H-Index - 89
eISSN - 1559-8985
pISSN - 1070-4698
DOI - 10.2528/pier06021801
Subject(s) - microstrip antenna , bandwidth (computing) , patch antenna , materials science , microstrip , optoelectronics , acoustics , antenna (radio) , optics , physics , electrical engineering , telecommunications , engineering
In this paper, the effect of Electromagnetic Bandgap (EBG) Superstrates on return loss of the Probe-Fed Microstrip Antenna (PFMA) has been examined. Originally the EBG superstrate layer made by Frequency Selective Surface (FSS) layers is used to increase the directivity of the PFMA, but to increase the efficiency of the whole structure including the PFMA and EBG superstrate it is necessary to have suitable impedance matching. In this paper the EBG superstrate as a resonance load to the primary radiation source (PFMA) and then by choosing the appropriate geometrical parameters of the structure we can obtain suitable impedance matching beside the directivity enhancement of the primary radiation source.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom