z-logo
open-access-imgOpen Access
ANALYTICAL TECHNIQUES TO EVALUATE THE INTEGRALS OF 3D AND 2D SPATIAL DYADIC GREEN'S FUNCTIONS
Author(s) -
Guozhong Gao,
Carlos TorresVerdín,
Tarek M. Habashy
Publication year - 2005
Publication title -
electromagnetic waves
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.437
H-Index - 89
eISSN - 1559-8985
pISSN - 1070-4698
DOI - 10.2528/pier04070201
Subject(s) - mathematics , calculus (dental) , mathematical analysis , orthodontics , medicine
—The Dyadic Green’s function is in general viewed as a generalized, or distribution function. A commonly used procedure to evaluate its volume integral is the principal-volume method, in which an infinitesimal volume around the singularity is excluded from the integration volume. In this paper, we develop a general analytical technique to evaluate the integral of the dyadic Green’s function without the need to specify an exclusion volume. The newly derived expressions accurately integrate the singularity and can be used for integration over any shape of spatial discretization cell. We derive explicit expressions for the integral of the 3D dyadic Green’s function over a sphere and over a general rectangular block. Similar expressions are obtained for the 2D dyadic Green’s function over a cylinder and over a general rectangular cell. It is shown,that using the integration technique described in this paper for spherical/circular cells, simple analytical expressions can be derived, and these expressions are exactly the same as those obtained using the principal-volume method. Furthermore, the analytical expressions for the integral of the dyadic Green’s function are valid regardless of the location of the observation point, both inside and outside the integration domain. Because the expressions only involve surface integrals/line integrals, their evaluation can be performed very efficiently witha h ighdegree of accuracy. We compare,our expressions against the equivalent volume approximation for a wide 48,Gao, Torres-Verd´ın, and Habashy

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom