
Métodos Axiomáticos: a Interpretação Matemática de Lawvere da Lógica de Hegel
Author(s) -
Nicholas Kluge Corrêa
Publication year - 2020
Publication title -
ágora filosófica/ágora filosófica
Language(s) - Portuguese
Resource type - Journals
eISSN - 1982-999X
pISSN - 1679-5385
DOI - 10.25247/p1982-999x.2020.v20n3.p206-239
Subject(s) - philosophy , axiom , gödel's incompleteness theorems , mathematics , humanities , epistemology , gödel , geometry
O pensamento axiomático de Hilbert foi um influente modelo filosófico que motivou movimentos como o positivismo no início do século XX, em diversas áreas dentro, e fora, da filosofia, como a epistemologia e a metamatemática. O formalismo axiomático fornece, através do uso da lógica de primeira ordem, uma importante fundação para modelos lógicos formais, o que, para Hilbert, representaria um modelo universal de investigação empírica, não só para a matemática, mas para todas as ciências naturais, e pela visão positivista, também a filosofia. Contudo, no caso mais específico da matemática, existe uma certa descomunicação entre os fundamentos da matemática e sua prática, onde métodos informais, ainda promovem elegantes ferramentas para matemáticos de diversas áreas, inclusive, quando certos paradigmas tentam ser quebrados. É exatamente esta assincronia entre os fundamentos da matemática, e a sua prática que iremos investigar neste estudo. Lawvere, insatisfeito com a “fundação não fundamentada” do método axiomático proposto por Hilbert, e inspirado pela dialética hegeliana, procurou revisar os fundamentos da matemática pela lógica categórica e a Teoria das Categorias. Vemos neste estudo, como as interpretações de Lawvere de conceitos da lógica de Hegel, como, equivalência, unidade dos opostos e “aufheben”, permitem uma nova abordagem matemática, com um posicionamento filosófico que procura, de certa forma, transcender a dicotomia entre escolas analíticas e continentais. Lawvere trata a lógica objetiva de Hegel como uma possível estratégia para resolver o problema de aterramento lógico em metafísica. Por fim, vemos como as contribuições de Lawvere para a axiomatização da lógica categórica tiveram impactos inovadores na metamatemática, especialmente no desenvolvimento das fundações univalentes de Vladimir Voevodsky.