z-logo
open-access-imgOpen Access
Experimental Investigation of Normal Shock Boundary-Layer Interaction with Hybrid Flow Control
Author(s) -
Manan A. Vyas,
Stefanie Hirt,
Bernhard H. Anderson
Publication year - 2012
Publication title -
50th aiaa aerospace sciences meeting including the new horizons forum and aerospace exposition
Language(s) - English
Resource type - Conference proceedings
DOI - 10.2514/6.2012-48
Subject(s) - boundary layer , boundary layer control , mechanics , flow (mathematics) , layer (electronics) , computer science , materials science , flow separation , physics , composite material
Hybrid flow control, a combination of micro-ramps and micro-jets, was experimentally investigated in the 15x15 cm Supersonic Wind Tunnel (SWT) at the NASA Glenn Research Center. Full factorial, a design of experiments (DOE) method, was used to develop a test matrix with variables such as inter-ramp spacing, ramp height and chord length, and micro-jet injection flow ratio. A total of 17 configurations were tested with various parameters to meet the DOE criteria. In addition to boundary-layer measurements, oil flow visualization was used to qualitatively understand shock induced flow separation characteristics. The flow visualization showed the normal shock location, size of the separation, path of the downstream moving counter-rotating vortices, and corner flow effects. The results show that hybrid flow control demonstrates promise in reducing the size of shock boundary-layer interactions and resulting flow separation by means of energizing the boundary layer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom