Stereoscopic Planar Laser-Induced Fluorescence Imaging at 500 kHz
Author(s) -
Taylor Medford,
Paul M. Danehy,
Stephen B. Jones,
Naibo Jiang,
M. Webster,
Walter Lempert,
Joseph D. Miller,
Terry E. Meyer
Publication year - 2011
Publication title -
50th aiaa aerospace sciences meeting including the new horizons forum and aerospace exposition
Language(s) - English
Resource type - Conference proceedings
DOI - 10.2514/6.2011-985
Subject(s) - planar laser induced fluorescence , planar , hypersonic speed , optics , laminar flow , materials science , frame rate , stereoscopy , laser , mach number , flow (mathematics) , volumetric flow rate , wind tunnel , water tunnel , laser scanning , laser induced fluorescence , physics , computer science , vortex , computer graphics (images) , quantum mechanics , mechanics , thermodynamics
A new measurement technique for obtaining time- and spatially-resolved image sequences in hypersonic flows is developed. Nitric-oxide planar laser-induced fluorescence (NO PLIF) has previously been used to investigate transition from laminar to turbulent flow in hypersonic boundary layers using both planar and volumetric imaging capabilities. Low flow rates of NO were typically seeded into the flow, minimally perturbing the flow. The volumetric imaging was performed at a measurement rate of 10 Hz using a thick planar laser sheet that excited NO fluorescence. The fluorescence was captured by a pair of cameras having slightly different views of the flow. Subsequent stereoscopic reconstruction of these images allowed the three-dimensional flow structures to be viewed. In the current paper, this approach has been extended to 50,000 times higher repetition rates. A laser operating at 500 kHz excites the seeded NO molecules, and a camera, synchronized with the laser and fitted with a beam-splitting assembly, acquires two separate images of the flow. The resulting stereoscopic images provide three-dimensional flow visualizations at 500 kHz for the first time. The 200 ns exposure time in each frame is fast enough to freeze the flow while the 500 kHz repetition rate is fast enough to time-resolve changes in the flow being studied. This method is applied to visualize the evolving hypersonic flow structures that propagate downstream of a discrete protuberance attached to a flat plate. The technique was demonstrated in the NASA Langley Research Center's 31-Inch Mach 10 Air Tunnel facility. Different tunnel Reynolds number conditions, NO flow rates and two different cylindrical protuberance heights were investigated. The location of the onset of flow unsteadiness, an indicator of transition, was observed to move downstream during the tunnel runs, coinciding with an increase in the model temperature.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom