Summary of the Tandem Cylinder Solutions from the Benchmark problems for Airframe Noise Computations-I Workshop
Author(s) -
David P. Lockard
Publication year - 2011
Publication title -
50th aiaa aerospace sciences meeting including the new horizons forum and aerospace exposition
Language(s) - English
Resource type - Conference proceedings
DOI - 10.2514/6.2011-353
Subject(s) - airframe , benchmark (surveying) , computation , noise (video) , computer science , reynolds number , computational science , flow (mathematics) , grid , cartesian coordinate system , algorithm , aerospace engineering , mathematics , turbulence , engineering , geometry , physics , mechanics , artificial intelligence , image (mathematics) , geography , geodesy
Fifteen submissions in the tandem cylinders category of the First Workshop on Benchmark problems for Airframe Noise Computations are summarized. Although the geometry is relatively simple, the problem involves complex physics. Researchers employed various block-structured, overset, unstructured and embedded Cartesian grid techniques and considerable computational resources to simulate the flow. The solutions are compared against each other and experimental data from 2 facilities. Overall, the simulations captured the gross features of the flow, but resolving all the details which would be necessary to compute the noise remains challenging. In particular, how to best simulate the effects of the experimental transition strip, and the associated high Reynolds number effects, was unclear. Furthermore, capturing the spanwise variation proved difficult.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom