Assessment of Radiated Fan Noise Prediction Capabilities using Static Engine Test Data
Author(s) -
Douglas M. Nark
Publication year - 2011
Publication title -
nasa sti repository (national aeronautics and space administration)
Language(s) - English
Resource type - Conference proceedings
DOI - 10.2514/6.2011-2807
Subject(s) - noise (video) , computer science , test data , test (biology) , acoustics , artificial intelligence , physics , geology , image (mathematics) , programming language , paleontology
This paper describes further assessment of the CDUCT-LaRC code via comparison with static engine test data. In an effort to improve confidence in the use of CDUCT-LaRC for liner optimization studies addressing realistic three-dimensional geometries, inlet radiated fan noise predictions were performed at 54% and 87% engine speed settings. Predictions were then compared with far-field measurements to assess the approach and implementation. The particular configurations were chosen to exercise the three-dimensional capability of CDUCT-LaRC and it’s applicability to realistic configurations and conditions. At the 54% engine speed setting, the predictions capture the general directivity and acoustic treatment effects quite well. Comparisons of the predicted and measured directivity at the 87% power setting were more problematic. This was likely due in part to the difficulties in source specification and possibly the nonlinear nature of buzz-saw tones at this engine operating condition. Overall, the approach captured the basic trends and provided a conservative estimate of liner effects from which relative performance metrics could be inferred.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom