z-logo
open-access-imgOpen Access
Reynolds-Averaged Navier-Stokes Simulation of a 2-D Circulation Control Wind Tunnel Experiment
Author(s) -
Brian Allan,
Gregory S. Jones,
John C. Lin
Publication year - 2011
Publication title -
50th aiaa aerospace sciences meeting including the new horizons forum and aerospace exposition
Language(s) - English
Resource type - Conference proceedings
DOI - 10.2514/6.2011-25
Subject(s) - wind tunnel , reynolds number , circulation (fluid dynamics) , mechanics , marine engineering , computational fluid dynamics , physics , aerospace engineering , navier–stokes equations , meteorology , geology , engineering , turbulence , compressibility
Numerical simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted at the NASA Langley Basic Aerodynamics Research Tunnel (BART). The RANS simulations are compared to a low blowing case with a jet momentum coefficient, Cμ ,o f 0.047 and a higher blowing case of 0.115. Three dimensional simulations of the model and tunnel walls show wall effects on the lift and airfoil surface pressures. These wall effects include a 4% decrease of the midspan sectional lift for the Cμ 0.115 blowing condition. Simulations comparing the performance of the Spalart Allmaras (SA) and Shear Stress Transport (SST) turbulence models are also made, showing the SST model compares best to the experimental data. A Rotational/Curvature Correction (RCC) to the turbulence model is also evaluated demonstrating an improvement in the CFD predictions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom