z-logo
open-access-imgOpen Access
Analysis of Flame Deflector Spray Nozzles in Rocket Engine Test Stands
Author(s) -
Jai Sachdev,
Vineet Ahuja,
Ashvin Hosangadi,
Daniel Allgood
Publication year - 2010
Publication title -
nasa sti repository (national aeronautics and space administration)
Language(s) - English
Resource type - Conference proceedings
DOI - 10.2514/6.2010-6972
Subject(s) - rocket engine , nozzle , automotive engineering , aerospace engineering , rocket engine nozzle , rocket (weapon) , aeronautics , environmental science , marine engineering , materials science , engineering
The development of a unified tightly coupled multi-phase computational framework is described for the analysis and design of cooling spray nozzle configurations on the flame deflector in rocket engine test stands. An Eulerian formulation is used to model the disperse phase and is coupled to the gas-phase equations through momentum and heat transfer as well as phase change. The phase change formulation is modeled according to a modified form of the Hertz-Knudsen equation. Various simple test cases are presented to verify the validity of the numerical framework. The ability of the methodology to accurately predict the temperature load on the flame deflector is demonstrated though application to an actual sub-scale test facility. The CFD simulation was able to reproduce the result of the test-firing, showing that the spray nozzle configuration provided insufficient amount of cooling.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom