z-logo
open-access-imgOpen Access
Effect of Counterflow Jet on a Supersonic Reentry Capsule
Author(s) -
ChauLyan Chang,
Balaji Shankar Venkatachari,
Gary Cheng
Publication year - 2006
Publication title -
nasa sti repository (national aeronautics and space administration)
Language(s) - English
Resource type - Conference proceedings
DOI - 10.2514/6.2006-4776
Subject(s) - hypersonic speed , aerospace engineering , aerodynamics , supersonic speed , hypersonic flight , bow shock (aerodynamics) , atmospheric entry , expansion tunnel , hypersonic wind tunnel , computer science , computational fluid dynamics , space shuttle thermal protection system , shock (circulatory) , mechanics , engineering , wind tunnel , physics , shock wave , meteorology , thermal , medicine
Recent NASA initiatives for space exploration have reinvigorated research on Apollo-like capsule vehicles. Aerothermodynamic characteristics of these capsule configurations during reentry play a crucial role in the performance and safety of the planetary entry probes and the crew exploration vehicles. At issue are the forebody thermal shield protection and afterbody aeroheating predictions. Due to the lack of flight or wind tunnel measurements at hypersonic speed, design decisions on such vehicles would rely heavily on computational results. Validation of current computational tools against experimental measurement thus becomes one of the most important tasks for general hypersonic research. This paper is focused on time-accurate numerical computations of hypersonic flows over a set of capsule configurations, which employ a counterflow jet to offset the detached bow shock. The accompanying increased shock stand-off distance and modified heat transfer characteristics associated with the counterflow jet may provide guidance for future design of hypersonic reentry capsules. The newly emerged space-time conservation element solution element (CESE) method is used to perform time-accurate, unstructured mesh Navier-Stokes computations for all cases investigated. The results show good agreement between experimental and numerical Schlieren pictures. Surface heat flux and aerodynamic force predictions of the capsule configurations are discussed in detail.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom