A High-Throughput Processor for Flight Control Research Using Small UAVs
Author(s) -
Robert H. Klenke,
William C. Sleeman,
Mark A. Motter
Publication year - 2006
Publication title -
nasa sti repository (national aeronautics and space administration)
Language(s) - English
Resource type - Conference proceedings
DOI - 10.2514/6.2006-3308
Subject(s) - field programmable gate array , throughput , computer science , embedded system , microcontroller , autopilot , computer hardware , key (lock) , gate array , operating system , engineering , wireless , control engineering
There are numerous autopilot systems that are commercially available for small (<100 lbs) UAVs. However, they all share several key disadvantages for conducting aerodynamic research, chief amongst which is the fact that most utilize older, slower, 8- or 16-bit microcontroller technologies. This paper describes the development and testing of a flight control system (FCS) for small UAV s based on a modern, high throughput, embedded processor. In addition, this FCS platform contains user-configurable hardware resources in the form of a Field Programmable Gate Array (FPGA) that can be used to implement custom, application-specific hardware. This hardware can be used to off-load routine tasks such as sensor data collection, from the FCS processor thereby further increasing the computational throughput of the system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom