z-logo
open-access-imgOpen Access
Optimal Design and Damage Tolerance Verification of an Isogrid Structure for Helicopter Application
Author(s) -
Donald J. Baker,
Damodar Ambur,
Jack Fudge,
Christos Kassapoglou
Publication year - 2003
Publication title -
54th aiaa/asme/asce/ahs/asc structures, structural dynamics, and materials conference
Language(s) - English
Resource type - Conference proceedings
DOI - 10.2514/6.2003-1502
Subject(s) - damage tolerance , computer science , algorithm , composite number
A composite isogrid panel design for application to a rotorcraft fuselage is presented. An optimum panel design for the lower fuselage of the rotorcraft that is subjected to combined in-plane compression and shear loads was generated using a design tool that utilizes a smeared-stiffener theory in conjunction with a genetic algorithm. A design feature was introduced along the edges of the panel that facilitates introduction of loads into the isogrid panel without producing undesirable local bending gradients. A low-cost manufacturing method for the isogrid panel that incorporates these design details is also presented. Axial compression tests were conducted on the undamaged and low-speed impact damaged panels to demonstrate the damage tolerance of this isogrid panel. A combined loading test fixture was designed and utilized that allowed simultaneous application of compression and shear loads to the test specimen. Results from finite element analyses are presented for the isogrid panel designs and these results are compared with experimental results. This study illustrates the isogrid concept to be a viable candidate for application to the helicopter lower fuselage structure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom