z-logo
open-access-imgOpen Access
Computational investigation of the performance and back-pressure limits of a hypersonic inlet
Author(s) -
Michael K. Smart,
J. WHITE
Publication year - 2002
Publication title -
nasa sti repository (national aeronautics and space administration)
Language(s) - English
Resource type - Conference proceedings
DOI - 10.2514/6.2002-508
Subject(s) - hypersonic speed , aerospace engineering , inlet , aeronautics , hypersonic flow , computer science , environmental science , engineering , mechanical engineering
A computational analysis of Mach 6.2 operation of a hypersonic inlet with rectangular-to-elliptical shape transition has been performed. The results of the computations are compared with experimental data for cases with and without a manually imposed back-pressure. While the no-back-pressure numerical solutions match the general trends of the data, certain features observed in the experiments did not appear in the computational solutions. The reasons for these discrepancies are discussed and possible remedies are suggested. Most importantly, however, the computational analysis increased the understanding of the consequences of certain aspects of the inlet design. This will enable the performance of future inlets of this class to be improved. Computational solutions with back-pressure under-estimated the back-pressure limit observed in the experiments, but did supply significant insight into the character of highly back-pressured inlet flows. Copyright © 2002 by M.K.Smart, published by the American Institute of Aeronautics and Astronautics, Inc. with permission.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom