z-logo
open-access-imgOpen Access
Blade surface pressure distributions in a rocket engine turbine - Experimental work with on-blade pressure transducers
Author(s) -
Susan Hudson,
Thomas Zoladz,
Lisa W. Griffin
Publication year - 2000
Publication title -
36th aiaa/asme/sae/asee joint propulsion conference and exhibit
Language(s) - English
Resource type - Conference proceedings
DOI - 10.2514/6.2000-3239
Subject(s) - blade (archaeology) , turbine blade , rocket engine , rocket (weapon) , transducer , pressure sensor , work (physics) , acoustics , turbine , aero engine , surface pressure , mechanical engineering , aerospace engineering , surface (topology) , materials science , engineering , mechanics , physics , mathematics , geometry
Understanding the unsteady aspects of turbine rotor flowfields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with surface-mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in three respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, two independent unsteady data acquisition systems and fundamental signal processing approaches were used. Finally, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools will contribute to future turbine programs such as those for reusable launch vehicles.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom