Flutter of Asymmetrically Swept Wings
Author(s) -
Terrence A. Weisshaar,
J. B. Crittenden
Publication year - 1976
Publication title -
aiaa journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.828
H-Index - 158
eISSN - 1081-0102
pISSN - 0001-1452
DOI - 10.2514/3.61325
Subject(s) - flutter , torsion (gastropod) , wing , moment of inertia , bending moment , structural engineering , mechanics , aeroelasticity , inertia , mode coupling , bending , physics , classical mechanics , engineering , aerodynamics , optics , medicine , surgery
Two formulations of the oblique wing flutter problem are presented; one formulation allows only simple wing bending deformations and rigid body roll as degrees of freedom, while the second formulation includes a more complex bending-torsional deformation together with the roll freedom. Flutter is found to occur in two basic modes. The first mode is associated with wing bending-aircraft roll coupling and occurs at low values of reduced frequency. The second instability mode closely resembles a classical bending-torsion wing flutter event. This latter mode occurs at much higher reduced frequencies than the first. The occurrence of the bending-roll coupling mode is shown to lead to lower flutter speeds while the bending-torsion mode is associated with higher flutter speeds. The ratio of the wing mass moment of inertia in roll to the fuselage roll moment of inertia is found to be a major factor in the determination of which of the two instabilities is critical.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom