General Geometric Theory of Attitude Determination from Directional Sensing
Author(s) -
Bertrand T. Fang
Publication year - 1976
Publication title -
journal of spacecraft and rockets
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.758
H-Index - 79
eISSN - 1533-6794
pISSN - 0022-4650
DOI - 10.2514/3.57092
Subject(s) - spacecraft , aerospace engineering , missile , spacecraft design , space (punctuation) , systems engineering , space vehicle , space exploration , computer science , space technology , attitude control , space research , engineering , operating system
A general geometric theory of spacecraft attitude determination from external reference direction sensors was presented. Outputs of different sensors are reduced to two kinds of basic directional measurements. Errors in these measurement equations are studied in detail. The partial derivatives of measurements with respect to the spacecraft orbit, the spacecraft attitude, and the error parameters form the basis for all orbit and attitude determination schemes and error analysis programs and are presented in a series of tables. The question of attitude observability is studied with the introduction of a graphical construction which provides a great deal of physical insight. The result is applied to the attitude observability of the IMP-8 spacecraft.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom