z-logo
open-access-imgOpen Access
Equivalent plate analysis of aircraft wing box structures with general planform geometry
Author(s) -
G. L. Giles
Publication year - 1986
Publication title -
journal of aircraft
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 94
eISSN - 1533-3868
pISSN - 0021-8669
DOI - 10.2514/3.45393
Subject(s) - wing , aeroelasticity , planform , finite element method , computation , structural engineering , ritz method , aerodynamics , wing configuration , vibration , geometry , displacement (psychology) , swept wing , engineering , computer science , mathematics , mathematical analysis , aerospace engineering , algorithm , boundary value problem , physics , acoustics , psychology , psychotherapist
A new equilvalent plate analysis formulation is described which is capable of modeling aircraft wing structures with a general planform such as cranked wing boxes. Multiple trapezoidal segments are used to represent such planforms. A Ritz solution technique is used in conjunction with global displacement functions which encompass all the segments. This Ritz solution procedure is implemented efficiently into a computer program so that it can be used by rigorous optimization algorithms for application in early preliminary design. A direct method to interface this structural analysis procedure with aerodynamic programs for use in aeroelastic calculations is described. This equivalent plate analysis procedure is used to calculate the static deflections and stresses and vibration frequencies and modes of an example wing configuration. The numerical results are compared with results from a finite element model of the same configuration to illustrate typical levels of accuracy and computation times resulting from use of this procedure.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom