Stagnation point nonequilibrium radiative heating and the influence of energy exchange models
Author(s) -
Lin C. Hartung,
Robert Mitcheltree,
Peter A. Gnoffo
Publication year - 1992
Publication title -
journal of thermophysics and heat transfer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.548
H-Index - 67
eISSN - 1533-6808
pISSN - 0887-8722
DOI - 10.2514/3.376
Subject(s) - stagnation point , non equilibrium thermodynamics , radiative transfer , radiant heat , mechanics , energy exchange , materials science , thermodynamics , physics , heat transfer , atmospheric sciences , optics , composite material
A nonequilibrium radiative heating prediction method has been used to evaluate several energy exchange models used in nonequilibrium computational fluid dynamics methods. The radiative heating measurements from the FIRE II flight experiment supply an experimental benchmark against which different formulations for these exchange models can be judged. The models which predict the lowest radiative heating are found to give the best agreement with the flight data. Examination of the spectral distribution of radiation indicates that despite close agreement of the total radiation, many of the models examined predict excessive molecular radiation. It is suggested that a study of the nonequilibrium chemical kinetics may lead to a correction for this problem.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom