Wave combustors for trans-atmospheric vehicles
Author(s) -
Gene P. Menees,
Henry G. Adelman,
Jean-Luc Cambier,
Jeffrey V. Bowles
Publication year - 1992
Publication title -
journal of propulsion and power
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 101
eISSN - 1533-3876
pISSN - 0748-4658
DOI - 10.2514/3.23536
Subject(s) - aerospace engineering , environmental science , meteorology , atmospheric entry , aeronautics , materials science , automotive engineering , physics , engineering
A performance analysis is given of a conceptual transatmospheric vehicle (TAV). The TAV is powered by a an oblique detonation wave engine (ODWE). The ODWE is an airbreathing hypersonic propulsion system which utilizes shock and detonation waves to enhance fuel-air mixing and combustion in supersonic flow. In this wave combustor concept, an oblique shock wave in the combustor can act as a flameholder by increasing the pressure and temperature of the air-fuel mixture, thereby decreasing the ignition delay. If the oblique shock is sufficiently strong, then the combustion front and the shock wave can couple into a detonation wave. In this case, combustion occurs almost instantaneously in a thin zone behind the wave front. The result is a shorter lighter engine compared to the scramjet. The ODWE-powered hypersonic vehicle performance is compared to that of a scramjet-powered vehicle. Among the results outlined, it is found that the ODWE trades a better engine performance above Mach 15 for a lower performance below Mach 15. The overall higher performance of the ODWE results in a 51,000-lb weight savings and a higher payload weight fraction of approximately 12 percent.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom