z-logo
open-access-imgOpen Access
Digital robust control law synthesis using constrained optimization
Author(s) -
Vivek Mukhopadhyay
Publication year - 1989
Publication title -
journal of guidance control and dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.573
H-Index - 143
eISSN - 1533-3884
pISSN - 0731-5090
DOI - 10.2514/3.20388
Subject(s) - computer science , control theory (sociology) , control (management) , mathematical optimization , law , control engineering , engineering , mathematics , artificial intelligence , political science
Development of digital robust control laws for active control of high performance flexible aircraft and large space structures is a research area of significant practical importance. The flexible system is typically modeled by a large order state space system of equations in order to accurately represent the dynamics. The active control law must satisy multiple conflicting design requirements and maintain certain stability margins, yet should be simple enough to be implementable on an onboard digital computer. Described here is an application of a generic digital control law synthesis procedure for such a system, using optimal control theory and constrained optimization technique. A linear quadratic Gaussian type cost function is minimized by updating the free parameters of the digital control law, while trying to satisfy a set of constraints on the design loads, responses and stability margins. Analytical expressions for the gradients of the cost function and the constraints with respect to the control law design variables are used to facilitate rapid numerical convergence. These gradients can be used for sensitivity study and may be integrated into a simultaneous structure and control optimization scheme.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom