z-logo
open-access-imgOpen Access
Automated Approach to Very High-Order Aeroacoustic Computations
Author(s) -
Rodger Dyson,
John W. Goodrich
Publication year - 2001
Publication title -
aiaa journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.828
H-Index - 158
eISSN - 1081-0102
pISSN - 0001-1452
DOI - 10.2514/2.1349
Subject(s) - stencil , computational aeroacoustics , interpolation (computer graphics) , grid , regular grid , euler equations , computation , mathematics , algorithm , recursion (computer science) , computer science , mathematical optimization , computational science , geometry , mathematical analysis , aeroacoustics , animation , telecommunications , computer graphics (images) , sound pressure
Computational aeroacoustics requires efficient, high-resolution simulation tools. For smooth problems, this is best accomplished with very high-order in space and time methods on small stencils. However, the complexity of highly accurate numerical methods can inhibit their practical application, especially in irregular geometries. This complexity is reduced by using a special form of Hermite divided-difference spatial interpolation on Cartesian grids, and a Cauchy-Kowalewski recursion procedure for time advancement. In addition, a stencil constraint tree reduces the complexity of interpolating grid points that am located near wall boundaries. These procedures are used to develop automatically and to implement very high-order methods (> 15) for solving the linearized Euler equations that can achieve less than one grid point per wavelength resolution away from boundaries by including spatial derivatives of the primitive variables at each grid point. The accuracy of stable surface treatments is currently limited to 11th order for grid aligned boundaries and to 2nd order for irregular boundaries.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom