z-logo
open-access-imgOpen Access
Cruise Range in Formation Flight
Author(s) -
Mark Voskuijl
Publication year - 2017
Publication title -
journal of aircraft
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 94
eISSN - 1533-3868
pISSN - 0021-8669
DOI - 10.2514/1.c034246
Subject(s) - mach number , climb , cruise , aerospace engineering , fuel efficiency , range (aeronautics) , altitude (triangle) , aircraft fuel system , transonic , environmental science , aeronautics , mechanics , aerodynamics , meteorology , engineering , physics , mathematics , combustion , chemistry , geometry , combustion chamber , organic chemistry , vapor lock
A new set of analytical range equations (a modification of the traditional Breguet range equation) suitable for formation flight at transonic flight speeds under realistic operating conditions (constant Mach number and altitude) is derived. Formations of two aircraft of the same type are analyzed to determine the effects of 1) weight differences between the aircraft, 2) altitude, and 3) the formation flight range on the potential fuel benefits and the associated optimum Mach number. In the case of a weight difference, the lightest aircraft should lead the formation to realize the largest fuel benefits. Overall, fuel savings of 6 to 12% for the total formation can be realized at the expense of a reduction in cruise Mach number from 0.85 to 0.80. The fuel benefit is much less (2 to 8%) when the formation is flown at the original design cruise Mach number. In terms of fuel benefits and Mach number, it is beneficial to fly in formation at higher altitudes. Formation flight step climb procedures are possible, ...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom