Object-Oriented Unsteady Vortex Lattice Method for Flapping Flight
Author(s) -
Lyle N. Long,
Tracy E. Fritz
Publication year - 2004
Publication title -
journal of aircraft
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 94
eISSN - 1533-3868
pISSN - 0021-8669
DOI - 10.2514/1.7357
Subject(s) - flapping , vortex , wake , physics , aerospace engineering , aerodynamics , horseshoe vortex , wing , mechanics , wake turbulence , dissipation , classical mechanics , vortex ring , engineering , thermodynamics
The unsteady vortex lattice method is used to model the oscillating plunging, pitching, twisting, and flapping motions of a finite-aspect-ratio wing. Its potential applications include design and analysis of small unmanned air vehicles and in the study of the high-frequency flapping flight of birds and other small flyers. The results are verified by theory and, in the plunging and pitching cases, by experimental data. The model includes free-wake relaxation, vortex stretching, and vortex dissipation effects and is implemented using object-oriented computing techniques
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom