z-logo
open-access-imgOpen Access
Analysis of a Cylindrical Specimen Heated by an Impinging Hot Hydrogen Jet
Author(s) -
Ten-See Wang,
Van Luong,
John Foote,
Ron Litchford,
Yen-Sen Chen
Publication year - 2010
Publication title -
journal of thermophysics and heat transfer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.548
H-Index - 67
eISSN - 1533-6808
pISSN - 0887-8722
DOI - 10.2514/1.47737
Subject(s) - materials science , jet (fluid) , mechanics , hydrogen , thermodynamics , physics , quantum mechanics
A computational conjugate heat transfer methodology was developed, as a first step towards an efficient and accurate multiphysics, thermo-fluid computational methodology to predict environments for hypothetical solid-core, nuclear thermal engine thrust chamber and components. A solid conduction heat transfer procedure was implemented onto a pressure-based, multidimensional, finite-volume, turbulent, chemically reacting, thermally radiating, and unstructured grid computational fluid dynamics formulation. The conjugate heat transfer of a cylindrical material specimen heated by an impinging hot hydrogen jet inside an enclosed test fixture was simulated and analyzed. The solid conduction heat transfer procedure was anchored with a standard solid heat transfer code. Transient analyses were then performed with ,variable thermal conductivities representing three composites of a material utilized as flow element in a legacy engine test. It was found that material thermal conductivity strongly influences the transient heat conduction characteristics. In addition, it was observed that high thermal gradient occur inside the cylindrical specimen during an impulsive or a 10 s ramp start sequence, but not during steady-state operations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom