Sputter Erosion Sensor for Anode Layer-Type Hall Thrusters Using Cavity Ring-Down Spectroscopy
Author(s) -
Naoji Yamamoto,
Lei Tao,
Binyamin Rubin,
John D. Williams,
Azer P. Yalin
Publication year - 2009
Publication title -
journal of propulsion and power
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 101
eISSN - 1533-3876
pISSN - 0748-4658
DOI - 10.2514/1.44784
Subject(s) - materials science , anode , ion thruster , cavity ring down spectroscopy , sputtering , spectroscopy , layer (electronics) , ring (chemistry) , aerospace engineering , optoelectronics , acoustics , composite material , physics , propulsion , engineering , nanotechnology , thin film , electrode , chemistry , quantum mechanics , organic chemistry
We report the development of a sputter erosion monitoring system to study Hall thruster lifetime and contamination. The laser-based sensor uses the continuous-wave cavity ring-down spectroscopy technique and allows for in situ measurements in near-real time. The continuous-wave cavity ring-down spectroscopy technique diagnostic allows direct probing of sputter products in their ground state, thereby providing a reliable quantitative measure of their overall number density. Combining the number density of sputtered particles with their velocity allows determination of the flux of sputtered particles and erosion rate. We perform proof of principle experiments, in which sputtered manganese atoms from the acceleration channel of an anode layer-type Hall thruster are measured. The measurement strategy is to detect the manganese atoms via an absorption line from the ground state at a wavelength of 403.076 nm (air). The measured path-integrated number density of sputtered manganese atoms is 1.7 ± 0.3 × 10 13 m -2 for an argon anode mass flow rate of 2.08 mg/s and a discharge voltage of 250 V. A finite element sputter model is used to compare the cavity ring-down spectroscopy results against validating mass loss measurements and shows good agreement.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom