Modeling Human Multimodal Perception and Control Using Genetic Maximum Likelihood Estimation
Author(s) -
Peter Zaal,
Daan M. Pool,
Q. P. Chu,
M. M. van Paassen,
Max Mulder,
J.A. Mulder
Publication year - 2009
Publication title -
journal of guidance control and dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.573
H-Index - 143
eISSN - 1533-3884
pISSN - 0731-5090
DOI - 10.2514/1.42843
Subject(s) - genetic algorithm , estimation theory , maximum likelihood , likelihood function , computer science , optimization problem , nonlinear system , expectation–maximization algorithm , mathematical optimization , maximum likelihood sequence estimation , algorithm , statistics , mathematics , physics , quantum mechanics
This paper presents a new method for estimating the parameters of multichannel pilot models that is based on maximum likelihood estimation. To cope with the inherent nonlinearity of this optimization problem, the gradientbased Gauss–Newton algorithm commonly used to optimize the likelihood function in terms of output error is complemented with a genetic algorithm. This significantly increases the probability of finding the global optimum of the optimization problem. The genetic maximum likelihood method is successfully applied to data from a recent human-in-the-loop experiment. Accurate estimates of the pilot model parameters and the remnant characteristics are obtained. Multiple simulations with increasing levels of pilot remnant are performed, using the set of parameters found from the experimental data, to investigate how the accuracy of the parameter estimate is affected by increasing remnant. It is shown that the bias in the parameter estimates is only substantial for very high levels of pilot remnant. Some adjustments to the maximum likelihood method are proposed to reduce this bias
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom