Adaptive Output Feedback Control of a Flexible Base Manipulator
Author(s) -
Bong-Jun Yang,
Anthony Calise,
J. I. Craig
Publication year - 2007
Publication title -
journal of guidance control and dynamics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.573
H-Index - 143
eISSN - 1533-3884
pISSN - 0731-5090
DOI - 10.2514/1.23707
Subject(s) - micromanipulator , control theory (sociology) , adaptive control , flexibility (engineering) , controller (irrigation) , control engineering , computer science , acceleration , control system , artificial neural network , vibration , engineering , control (management) , physics , mathematics , artificial intelligence , statistics , electrical engineering , classical mechanics , quantum mechanics , machine learning , agronomy , biology
This paper considers augmentation of an existing inertial damping mechanism by neural network-based adaptive control, for controlling a micromanipulator that is serially attached to a macromanipulator. The approach is demonstrated using an experimental test bed in which the micromanipulator is mounted at the tip of a cantilevered beam that resembles a macromanipulator with its joint locked. The inertial damping control combines acceleration feedback with position control for the micromanipulator so as to simultaneously suppress vibrations caused by the flexible beam while achieving precise tip positioning. Neural network-based adaptive elements are employed to augment the inertial damping controller when the existing control system becomes deficient due to modeling errors and uncertain operating conditions. There were several design challenges that had to be faced from an adaptive control perspective. One challenge was the presence of a nonminimum phase zero in an output feedback adaptive control design setting in which the regulated output variable has zero relative degree. Other challenges included flexibility in the actuation devices, lack of control degrees of freedom, and high dimensionality of the system dynamics. In this paper we describe how we overcame these difficulties by modifying a previous augmenting adaptive approach to make it suitable for this application. Experimental results are provided to illustrate the effectiveness of the augmenting approach to adaptive output feedback control design.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom