Effects of Fuel Distribution on Detonation Tube Performance
Author(s) -
Hugh D. Perkins,
ChihJen Sung
Publication year - 2005
Publication title -
journal of propulsion and power
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 101
eISSN - 1533-3876
pISSN - 0748-4658
DOI - 10.2514/1.2253
Subject(s) - detonation , equivalence ratio , mechanics , tube (container) , materials science , thrust , deflagration to detonation transition , thermodynamics , combustion , chemistry , physics , explosive material , combustor , composite material , organic chemistry
A pulse detonation engine (PDE) uses a series of high frequency intermittent detonation tubes to generate thrust. The process of filling the detonation tube with fuel and air for each cycle may yield non-uniform mixtures. Lack of mixture uniformity is commonly ignored when calculating detonation tube thrust performance. In this study, detonation cycles featuring idealized non-uniform H2/air mixtures were analyzed using the SPARK two-dimensional Navier-Stokes CFD code with 7-step H2/air reaction mechanism. Mixture non-uniformities examined included axial equivalence ratio gradients, transverse equivalence ratio gradients, and partially fueled tubes. Three different average test section equivalence ratios (phi), stoichiometric (phi = 1.00), fuel lean (phi = 0.90), and fuel rich (phi = 1.10), were studied. All mixtures were detonable throughout the detonation tube. It was found that various mixtures representing the same test section equivalence ratio had specific impulses within 1 percent of each other, indicating that good fuel/air mixing is not a prerequisite for optimal detonation tube performance.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom