Multidimensional Unstructured-Grid Liquid Rocket-Engine Nozzle Performance and Heat Transfer Analysis
Author(s) -
Ten-See Wang
Publication year - 2006
Publication title -
journal of propulsion and power
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.913
H-Index - 101
eISSN - 1533-3876
pISSN - 0748-4658
DOI - 10.2514/1.14699
Subject(s) - rocket engine nozzle , rocket engine , nozzle , liquid propellant rocket , aerospace engineering , unstructured grid , heat transfer , grid , environmental science , materials science , mechanical engineering , computational fluid dynamics , automotive engineering , engineering , mechanics , propellant , physics , geology , geodesy
The objective of this study is to conduct a unified computational analysis for computing design parameters such as axial thrust, convective and radiative wall heat fluxes for regeneratively cooled liquid rocket engine nozzles, so as to develop a computational strategy for computing those parameters through parametric investigations. The computational methodology is based on a multidimensional, finite-volume, turbulent, chemically reacting, radiating, unstructured-grid, and pressure-based formulation, with grid refinement capabilities. Systematic parametric studies on effects of wall boundary conditions, combustion chemistry, radiation coupling, computational cell shape, and grid refinement were performed and assessed. Under the computational framework of this study, it is found that the computed axial thrust performance, flow features, and wall heat fluxes compared well with those of available data and calculations, using a strategy of structured-grid dominated mesh, finite-rate chemistry, and cooled wall boundary condition.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom