z-logo
open-access-imgOpen Access
Off-Design Reynolds Number Effects for a Supersonic Transport
Author(s) -
Lewis R. Owens,
Richard A. Wahls,
S. Melissa Rivers
Publication year - 2005
Publication title -
journal of aircraft
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.64
H-Index - 94
eISSN - 1533-3868
pISSN - 0021-8669
DOI - 10.2514/1.10433
Subject(s) - reynolds number , supersonic speed , mechanics , reynolds averaged navier–stokes equations , computational fluid dynamics , choked flow , aerospace engineering , physics , computer science , turbulence , engineering
A high Reynolds number wind tunnel test was conducted to assess Reynolds number effects on the aerodynamic performance characteristics of a realistic, second-generation supersonic transport concept. The tests included longitudinal studies at transonic and low-speed, high-lift conditions across a range of chord Reynolds numbers (8 million to 120 million). Results presented focus on Reynolds number and static aeroelastic sensitivities at Mach 0.30 and 0.90 for a configuration without a tail. Static aeroelastic effects, which mask Reynolds number effects, were observed. Reynolds number effects were generally small and the drag data followed established trends of skin friction as a function of Reynolds number. A more nose-down pitching moment was produced as Reynolds number increased because of an outward movement of the inboard leading-edge separation at constant angles of attack. This study extends the existing Reynolds number database for supersonic transports operating at off-design conditions.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom