z-logo
open-access-imgOpen Access
Artificial Bee Colony (ABC) Algorithm for Constrained Optimization Improved with Genetic Operators
Author(s) -
Nebojša Bačanin,
Milan Tuba
Publication year - 2012
Publication title -
studies in informatics and control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.321
H-Index - 22
eISSN - 1841-429X
pISSN - 1220-1766
DOI - 10.24846/v21i2y201203
Subject(s) - artificial bee colony algorithm , computer science , swarm intelligence , metaheuristic , benchmark (surveying) , genetic algorithm , mathematical optimization , meta optimization , algorithm , artificial intelligence , particle swarm optimization , mathematics , machine learning , geodesy , geography
Artificial bee colony (ABC) is a relatively new swarm intelligence based metaheuristic. It was successfully applied to unconstrained optimization problems and later it was adjusted for constrained problems as well. In this paper we introduce modifications to the ABC algorithm for constrained optimization problems that improve performance of the algorithm. Modifications are based on genetic algorithm (GA) operators and are applied to the creation of new candidate solutions. We implemented our modified algorithm and tested it on 13 standard benchmark functions. The results were compared to the results of the latest (2011) Karaboga and Akay’s ABC algorithm and other state-of-the-art algorithms where our modified algorithm showed improved performance considering best solutions and even more considering

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom