Representing Joint Hierarchies with Box Embeddings
Author(s) -
Dhruvesh Patel,
Shib Sankar Dasgupta,
Xiang Li,
Luke Vilnis,
Andrew McCallum
Publication year - 2020
Language(s) - English
DOI - 10.24432/c5ks37
Learning representations for hierarchical and multi-relational knowledge has emerged as an active area of research. Box Embeddings [Vilnis et al., 2018, Li et al., 2019] represent concepts with hyperrectangles in n-dimensional space and are shown to be capable of modeling tree-like structures efficiently by training on a large subset of the transitive closure of the WordNet hypernym graph. In this work, we evaluate the capability of box embeddings to learn the transitive closure of a tree-like hierarchical relation graph with far fewer edges from the transitive closure. Box embeddings are not restricted to tree-like structures, however, and we demonstrate this by modeling the WordNet meronym graph, where nodes may have multiple parents. We further propose a method for modeling multiple relations jointly in a single embedding space using box embeddings. In all cases, our proposed method outperforms or is at par with all other embedding methods.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom