Determination of the rolling resistance coefficient of pneumatic wheel systems
Author(s) -
Łukasz Warguła,
Mateusz Kukla,
Bartosz Wieczorek
Publication year - 2019
Publication title -
autobusy – technika eksploatacja systemy transportowe
Language(s) - English
Resource type - Journals
eISSN - 2450-7725
pISSN - 1509-5878
DOI - 10.24136/atest.2019.066
Subject(s) - chassis , rolling resistance , automotive engineering , limiting , engine power , gear ratio , power (physics) , mechanical engineering , engineering , computer science , physics , quantum mechanics
The basic resistance during moving objects that are equipped with a circular system is rolling resistance. In objects powered by muscle power, such as: bicycles, wheelchairs, mobile machines, shelves and storage trolleys, the problem of rolling resistance limitation is more important than in the case of structures powered by engines characterized by a significant excess of driving force relative to the sum of resistance forces. Research is being carried out on limiting the rolling resistance force, however, there is a lack of methods for measuring this parameter in the actual operating conditions of devices with a drive system without a drive unit. In the article for research, an innovative method was used of measuring the rolling resistance coefficient of objects equipped only with the rolling chassis of accordance with the patent application P.424484 and a test device compatible with the patent application P.424483. The study involved a pneumatic wheel commonly used in wheelchairs, the use of which gains popularity with increased interest in the construction of electric or diesel vehicles with low energy demand. Examples of such vehicles are available during the Shell Eco-marathon competition. The study was financed from the means of the National Centre for Research and Development under LIDER VII programme, research project no. LIDER/7/0025/L-7/15/NCBR/2016.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom