z-logo
open-access-imgOpen Access
Initial rotational stiffness of tubular joints with axial force in chord
Author(s) -
Marsel Garifullin,
Sami Pajunen,
Kristo Mela,
Markku Heinisuo
Publication year - 2017
Publication title -
rakenteiden mekaniikka
Language(s) - English
Resource type - Journals
eISSN - 1797-5301
pISSN - 0783-6104
DOI - 10.23998/rm.64857
Subject(s) - chord (peer to peer) , stiffness , structural engineering , joint (building) , moment (physics) , rotational speed , joint stiffness , materials science , mechanics , engineering , physics , computer science , classical mechanics , mechanical engineering , distributed computing
In the frame analysis, the local model of the joint must follow the behavior of the joint. When completing the elastic global analysis, the initial rotational stiffness of joints should be known to obtain reliable moment distributions in frames. This paper consists of two parts. The first one evaluates the existing calculation approach for the initial rotational stiffness of welded rectangular hollow section T joints. The validation with the experimental data shows that the current approach significantly underestimates the initial rotational stiffness. An improvement for determining the initial stiffness of T joints is proposed. The second part deals with the influence of the axial force in the main member on the rotational stiffness of the joint. The conducted numerical study shows the extreme reduction of the initial stiffness, when the main member is loaded by axial loads. To consider this effect in the frame analysis, the paper proposes a chord stress function for the initial rotational stiffness for square hollow section T joints, using the curve fitting technique.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom