Insulin-Deficient Diabetic Condition Upregulates the Insulin-Secreting Capacity of Human Induced Pluripotent Stem Cell–Derived Pancreatic Endocrine Progenitor Cells After Implantation in Mice
Author(s) -
Taisuke Mochida,
Hikaru Ueno,
Noriko Tsubooka-Yamazoe,
Hideyuki Hiyoshi,
Ryo Ito,
Hirokazu Matsumoto,
Tarō Toyoda
Publication year - 2020
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db19-0728
Subject(s) - progenitor cell , endocrinology , stem cell , medicine , induced pluripotent stem cell , enteroendocrine cell , endocrine system , diabetes mellitus , insulin , pancreas , biology , microbiology and biotechnology , hormone , embryonic stem cell , biochemistry , gene
The host environment is a crucial factor for considering the transplant of stem cell-derived immature pancreatic cells in patients with type 1 diabetes. Here, we investigated the effect of insulin (INS)-deficient diabetes on the fate of immature pancreatic endocrine cell grafts and the underlying mechanisms. Human induced pluripotent stem cell-derived pancreatic endocrine progenitor cells (EPCs), which contained a high proportion of chromogranin A + NK6 homeobox 1 + cells and very few INS + cells, were used. When the EPCs were implanted under the kidney capsule in immunodeficient mice, INS-deficient diabetes accelerated increase in plasma human C-peptide, a marker of graft-derived INS secretion. The acceleration was suppressed by INS infusion but not affected by partial attenuation of hyperglycemia by dapagliflozin, an INS-independent glucose-lowering agent. Immunohistochemical analyses indicated that the grafts from diabetic mice contained more endocrine cells including proliferative INS-producing cells compared with that from nondiabetic mice, despite no difference in whole graft mass between the two groups. These data suggest that INS-deficient diabetes upregulates the INS-secreting capacity of EPC grafts by increasing the number of endocrine cells including INS-producing cells without changing the graft mass. These findings provide useful insights into postoperative diabetic care for cell therapy using stem cell-derived pancreatic cells.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom