Genetic Disruption of Adenosine Kinase in Mouse Pancreatic β-Cells Protects Against High-Fat Diet–Induced Glucose Intolerance
Author(s) -
Guadalupe Navarro,
Yassan Abdolazimi,
Zhengshan Zhao,
Haixia Xu,
Sooyeon Lee,
N. Armstrong,
Justin P. Annes
Publication year - 2017
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db16-0816
Subject(s) - insulin resistance , medicine , endocrinology , islet , insulin , biology , impaired glucose tolerance , adenosine , glucokinase , type 2 diabetes , diabetes mellitus
Islet β-cells adapt to insulin resistance through increased insulin secretion and expansion. Type 2 diabetes typically occurs when prolonged insulin resistance exceeds the adaptive capacity of β-cells. Our prior screening efforts led to the discovery that adenosine kinase (ADK) inhibitors stimulate β-cell replication. Here, we evaluated whether ADK disruption in mouse β-cells affects β-cell mass and/or protects against high-fat diet (HFD)-induced glucose dysregulation. Mice targeted at the Adk locus were bred to Rip-Cre and Ins1-Cre/ERT 1Lphi mice to enable constitutive (βADKO) and conditional (iβADKO) disruption of ADK expression in β-cells, respectively. Weight gain, glucose tolerance, insulin sensitivity, and glucose-stimulated insulin secretion (GSIS) were longitudinally monitored in normal chow (NC)-fed and HFD-fed mice. In addition, β-cell mass and replication were measured by immunofluorescence-based islet morphometry. NC-fed adult βADKO and iβADKO mice displayed glucose tolerance, insulin tolerance and β-cell mass comparable to control animals. By contrast, HFD-fed βADKO and iβADKO animals had improved glucose tolerance and increased in vivo GSIS. Improved glucose handling was associated with increased β-cell replication and mass. We conclude that ADK expression negatively regulates the adaptive β-cell response to HFD challenge. Therefore, modulation of ADK activity is a potential strategy for enhancing the adaptive β-cell response.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom