z-logo
open-access-imgOpen Access
Placental and Cord Blood Methylation of Genes Involved in Energy Homeostasis: Association With Fetal Growth and Neonatal Body Composition
Author(s) -
Marta Díaz,
Cristina García-Beltrán,
Giorgia Sebastiani,
Francis de Zegher,
Abel LópezBermejo,
Lourdes Ibáñez
Publication year - 2016
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db16-0776
Subject(s) - dna methylation , cord blood , placenta , epigenetics , fetus , biology , endocrinology , methylation , medicine , gestational diabetes , energy homeostasis , andrology , gene , pregnancy , gestation , gene expression , immunology , genetics , obesity
Low weight at birth is associated with subsequent susceptibility to diabetes. Epigenetic modulation is among the mechanisms potentially mediating this association. We performed a genome-wide DNA methylation analysis in placentas from term infants born appropriate-for-gestational-age (AGA) or small-for-gestational-age (SGA) to identify new genes related to fetal growth and neonatal body composition. Candidate genes were validated by bisulfite pyrosequencing (30 AGA, 21 SGA) and also analyzed in cord blood. Gene expression analyses were performed by RT-PCR. Neonatal body composition was assessed by dual X-ray absorptiometry at age 2 weeks. The ATG2B , NKX6.1, and SLC13A5 genes (respectively related to autophagy, β-cell development and function, and lipid metabolism) were hypermethylated in placenta and cord blood from SGA newborns, whereas GPR120 (related to free fatty acid regulation) was hypomethylated in placenta and hypermethylated in cord blood. Gene expression levels were opposite to methylation status, and both correlated with birth weight, circulating IGF-I, and total and abdominal fat at age 2 weeks. In conclusion, alterations in methylation and expression of genes involved in the regulation of energy homeostasis were found to relate to fetal growth and neonatal body composition and thus may be among the early mechanisms modulating later susceptibility to diabetes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom