HIF-1 Mediates Renal Fibrosis in OVE26 Type 1 Diabetic Mice
Author(s) -
B. K. Nayak,
Karthigayan Shanmugasundaram,
William E. Friedrichs,
Rita C. Cavaglierii,
Mandakini Patel,
Jeffrey L. Barnes,
Karen Block
Publication year - 2016
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db15-0519
Subject(s) - medicine , endocrinology , fibrosis
Hypoxia-inducible factor (HIF)-1 mediates hypoxia- and chronic kidney disease-induced fibrotic events. Here, we assessed whether HIF-1 blockade attenuates the manifestations of diabetic nephropathy in a type 1 diabetic animal model, OVE26. YC-1 [3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole], an HIF-1 inhibitor, reduced whole kidney glomerular hypertrophy, mesangial matrix expansion, extracellular matrix accumulation, and urinary albumin excretion as well as NOX4 protein expression and NADPH-dependent reactive oxygen species production, while blood glucose levels remained unchanged. The role of NOX oxidases in HIF-1-mediated extracellular matrix accumulation was explored in vitro using glomerular mesangial cells. Through a series of genetic silencing and adenoviral overexpression studies, we have defined GLUT1 as a critical downstream target of HIF-1α mediating high glucose-induced matrix expression through the NADPH oxidase isoform, NOX4. Together, our data suggest that pharmacological inhibition of HIF-1 may improve clinical manifestations of diabetic nephropathy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom