z-logo
open-access-imgOpen Access
MLL3 and MLL4 Methyltransferases Bind to the MAFA and MAFB Transcription Factors to Regulate Islet β-Cell Function
Author(s) -
David W. Scoville,
Holly A. Cyphert,
Lan Liao,
Jianming Xu,
A.B. Reynolds,
Shuangli Guo,
Roland Stein
Publication year - 2015
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db15-0281
Subject(s) - transcription factor , microbiology and biotechnology , gene knockdown , transactivation , biology , islet , chromatin , chromatin immunoprecipitation , histone , protein subunit , chemistry , gene , gene expression , genetics , promoter , endocrinology , insulin
Insulin produced by islet β-cells plays a critical role in glucose homeostasis, with type 1 and type 2 diabetes both resulting from inactivation and/or loss of this cell population. Islet-enriched transcription factors regulate β-cell formation and function, yet little is known about the molecules recruited to mediate control. An unbiased in-cell biochemical and mass spectrometry strategy was used to isolate MafA transcription factor-binding proteins. Among the many coregulators identified were all of the subunits of the mixed-lineage leukemia 3 (Mll3) and 4 (Mll4) complexes, with histone 3 lysine 4 methyltransferases strongly associated with gene activation. MafA was bound to the ∼1.5 MDa Mll3 and Mll4 complexes in size-fractionated β-cell extracts. Likewise, closely related human MAFB, which is important to β-cell formation and coproduced with MAFA in adult human islet β-cells, bound MLL3 and MLL4 complexes. Knockdown of NCOA6, a core subunit of these methyltransferases, reduced expression of a subset of MAFA and MAFB target genes in mouse and human β-cell lines. In contrast, a broader effect on MafA/MafB gene activation was observed in mice lacking NCoA6 in islet β-cells. We propose that MLL3 and MLL4 are broadly required for controlling MAFA and MAFB transactivation during development and postnatally.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom