Fine Mapping and Functional Studies of Risk Variants for Type 1 Diabetes at Chromosome 16p13.13
Author(s) -
M. Joseph Tomlinson,
Achilleas Pitsillides,
Rebecca Roche Pickin,
Matthew Mika,
Keith L. Keene,
Xuanlin Hou,
Josyf C. Mychaleckyj,
WeiMin Chen,
Patrick Concan,
Suna Önengüt-Gümüşcü
Publication year - 2014
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db13-1785
Subject(s) - single nucleotide polymorphism , type 2 diabetes , biology , genetics , snp , allele , odds ratio , case control study , diabetes mellitus , type 1 diabetes , medicine , gene , genotype , endocrinology
Single nucleotide polymorphisms (SNPs) located in the chromosomal region 16p13.13 have been previously associated with risk for several autoimmune diseases, including type 1 diabetes. To identify and localize specific risk variants for type 1 diabetes in this region and understand the mechanism of their action, we resequenced a 455-kb region in type 1 diabetic patients and unaffected control subjects, identifying 93 novel variants. A panel of 939 SNPs that included 46 of these novel variants was genotyped in 3,070 multiplex families with type 1 diabetes. Forty-eight SNPs, all located in CLEC16A, provided a statistically significant association (P < 5.32 × 10(-5)) with disease, with rs34306440 being most significantly associated (P = 5.74 × 10(-6)). The panel of SNPs used for fine mapping was also tested for association with transcript levels for each of the four genes in the region in B lymphoblastoid cell lines. Significant associations were observed only for transcript levels of DEXI, a gene with unknown function. We examined the relationship between the odds ratio for type 1 diabetes and the magnitude of the effect of DEXI transcript levels for each SNP in the region. Among SNPs significantly associated with type 1 diabetes, the common allele conferred an increased risk for disease and corresponded to lower DEXI expression. Our results suggest that the primary mechanism by which genetic variation at CLEC16A contributes to the risk for type 1 diabetes is through reduced expression of DEXI.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom