Inhibition of JNK Phosphorylation by a Novel Curcumin Analog Prevents High Glucose–Induced Inflammation and Apoptosis in Cardiomyocytes and the Development of Diabetic Cardiomyopathy
Author(s) -
Yong Pan,
Yi Wang,
Yunjie Zhao,
Kesong Peng,
Weixin Li,
Wang Yong-gang,
Jingjing Zhang,
Shanshan Zhou,
Quan Liu,
Xiaokun Li,
Lu Cai,
Guang Liang
Publication year - 2014
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db13-1577
Subject(s) - diabetic cardiomyopathy , inflammation , apoptosis , medicine , tumor necrosis factor alpha , kinase , cardiomyopathy , fibrosis , diabetes mellitus , pathogenesis , endocrinology , p38 mitogen activated protein kinases , phosphorylation , heart failure , protein kinase a , biology , microbiology and biotechnology , biochemistry
Hyperglycemia-induced inflammation and apoptosis have important roles in the pathogenesis of diabetic cardiomyopathy. We recently found that a novel curcumin derivative, C66, is able to reduce the high glucose (HG)-induced inflammatory response. This study was designed to investigate the protective effects on diabetic cardiomyopathy and its underlying mechanisms. Pretreatment with C66 significantly reduced HG-induced overexpression of inflammatory cytokines via inactivation of nuclear factor-κB in both H9c2 cells and neonatal cardiomyocytes. Furthermore, we showed that the inhibition of Jun NH2-terminal kinase (JNK) phosphorylation contributed to the protection of C66 from inflammation and cell apoptosis, which was validated by the use of SP600125 and dominant-negative JNK. The molecular docking and kinase activity assay confirmed direct binding of C66 to and inhibition of JNK. In mice with type 1 diabetes, the administration of C66 or SP600125 at 5 mg/kg significantly decreased the levels of plasma and cardiac tumor necrosis factor-α, accompanied by decreasing cardiac apoptosis, and, finally, improved histological abnormalities, fibrosis, and cardiac dysfunction without affecting hyperglycemia. Thus, this work demonstrated the therapeutic potential of the JNK-targeting compound C66 for the treatment of diabetic cardiomyopathy. Importantly, we indicated a critical role of JNK in diabetic heart injury, and suggested that JNK inhibition may be a feasible strategy for treating diabetic cardiomyopathy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom