Effects of AMPK Activation on Insulin Sensitivity and Metabolism in Leptin-Deficient ob/ob Mice
Author(s) -
Robby Zachariah Tom,
Pablo M. García-Rovés,
Rasmus J. O. Sjögren,
Lake Q. Jiang,
Maria Holmström,
Atul S. Deshmukh,
Elaine Vieira,
Alexander Chibalin,
Marie Björnholm,
Juleen R. Zierath
Publication year - 2014
Publication title -
diabetes
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.219
H-Index - 330
eISSN - 1939-327X
pISSN - 0012-1797
DOI - 10.2337/db13-0670
Subject(s) - medicine , endocrinology , ampk , insulin resistance , leptin , skeletal muscle , amp activated protein kinase , glycogen , insulin , protein kinase a , chemistry , glucose uptake , biology , phosphorylation , biochemistry , obesity
AMP-activated protein kinase (AMPK) is a heterotrimeric complex, composed of a catalytic subunit (α) and two regulatory subunits (β and γ), which act as a metabolic sensor to regulate glucose and lipid metabolism. A mutation in the γ3 subunit (AMPKγ3(R225Q)) increases basal AMPK phosphorylation, while concomitantly reducing sensitivity to AMP. AMPKγ3(R225Q) (γ3(R225Q)) transgenic mice are protected against dietary-induced triglyceride accumulation and insulin resistance. We determined whether skeletal muscle-specific expression of AMPKγ3(R225Q) prevents metabolic abnormalities in leptin-deficient ob/ob (ob/ob-γ3(R225Q)) mice. Glycogen content was increased, triglyceride content was decreased, and diacylglycerol and ceramide content were unaltered in gastrocnemius muscle from ob/ob-γ3(R225Q) mice, whereas glucose tolerance was unaltered. Insulin-stimulated glucose uptake in extensor digitorum longus muscle during the euglycemic-hyperinsulinemic clamp was increased in lean γ3(R225Q) mice, but not in ob/ob-γ3(R225Q) mice. Acetyl-CoA carboxylase phosphorylation was increased in gastrocnemius muscle from γ3(R225Q) mutant mice independent of adiposity. Glycogen and triglyceride content were decreased after leptin treatment (5 days) in ob/ob mice, but not in ob/ob-γ3(R225Q) mice. In conclusion, metabolic improvements arising from muscle-specific expression of AMPKγ3(R225Q) are insufficient to ameliorate insulin resistance and obesity in leptin-deficient mice. Central defects due to leptin deficiency may override any metabolic benefit conferred by peripheral overexpression of the AMPKγ3(R225Q) mutation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom